Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity.

نویسندگان

  • Carol Huang
  • Romel Somwar
  • Nish Patel
  • Wenyan Niu
  • Dóra Török
  • Amira Klip
چکیده

Hyperglycemia and hyperinsulinemia are cardinal features of acquired insulin resistance. In adipose cell cultures, high glucose and insulin cause insulin resistance of glucose uptake, but because of altered GLUT4 expression and contribution of GLUT1 to glucose uptake, the basis of insulin resistance could not be ascertained. Here we show that GLUT4 determines glucose uptake in L6 myotubes stably overexpressing myc-tagged GLUT4. Preincubation for 24 h with high glucose and insulin (high Glc/Ins) reduced insulin-stimulated GLUT4 translocation by 50%, without affecting GLUT4 expression. Insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, phosphatidylinositol 3-kinase activation, and Akt phosphorylation also diminished, as did insulin-mediated glucose uptake. However, basal glucose uptake rose by 40% without any gain in surface GLUT4. High Glc/Ins elevated basal p38 mitogen-activated protein kinase (MAPK) phosphorylation and activity, and a short inhibition of p38 MAPK with SB202190 corrected the rise in basal glucose uptake, suggesting that p38 MAPK activity contributes to this rise. We propose that in a cellular model of skeletal muscle, chronic exposure to high Glc/Ins reduced the acute, insulin-elicited GLUT4 translocation. In addition, basal state GLUT4 activity was augmented to partially compensate for the translocation defect, resulting in a more robust glucose uptake than what would be predicted from the amount of cell surface GLUT4 alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

High leptin levels acutely inhibit insulin-stimulated glucose uptake without affecting glucose transporter 4 translocation in l6 rat skeletal muscle cells.

Obesity is a major risk factor for the development of insulin resistance, characterized by impaired stimulation of glucose disposal into muscle. The mechanisms underlying insulin resistance are unknown. Here we examine the direct effect of leptin, the product of the obesity gene, on insulin-stimulated glucose uptake in cultured rat skeletal muscle cells. Preincubation of L6 myotubes with leptin...

متن کامل

Dimethyl sulfoxide enhances GLUT4 translocation through a reduction in GLUT4 endocytosis in insulin-stimulated 3T3-L1 adipocytes.

Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 ...

متن کامل

Troglitazone induces GLUT4 translocation in L6 myotubes.

A number of studies have demonstrated that insulin resistance in the skeletal muscle plays a pivotal role in the insulin resistance associated with obesity and type 2 diabetes. A decrease in GLUT4 translocation from the intracellular pool to the plasma membranes in skeletal muscles has been implicated as a possible cause of insulin resistance. Herein, we examined the effects of an insulin-sensi...

متن کامل

Oligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation.

The hormone resistin is elevated in obesity and impairs glucose homeostasis. Here, we examined the effect of oligomerized human resistin on insulin signaling and glucose metabolism in skeletal muscle and myotubes. This was investigated by incubating mouse extensor digitorum longus (EDL) and soleus muscles and L6 myotubes with physiological concentrations of resistin and assessing insulin-stimul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 51 7  شماره 

صفحات  -

تاریخ انتشار 2002